This document is draft and has not gone through the internal editorial review process.

Boston Region Vision Zero Action Plan

Appendix C: High-Injury Network Methodology

June 11, 2025

Table of Contents

1.Developing the High-Injury Network1
Data Sources1
Methodology1
Step 1—Preprocess the Data2
Step 2—Create a 1-Mile Sliding Window3
Step 3—Create a 100-Foot Buffer3
Step 4—Aggregate the Crash Scores3
Step 5—Calculate Percentile Rankings4
Analysis Findings4
Coverage Statistics4
Regional HIN and Corridors of Concern6
Subregional HINs and Corridors of Concern7
Municipal HINs and Corridors of Concern8
2. The High-Injury Network and PTI Populations14
Key Findings
What Does this Mean?
Task Approach15
Comparing the HIN to PTI Populations
Defining Communities15
HIN Relative to Area Demographics17
Initial Screening17
Refined Screening19

List of Tables

Table 1.1 HIN Crash Scoring	4
Table 1.2 HIN Coverage by Subregion	5
Table 2.1 Minority Populations and the HIN	21
Table 2.2 Low-Income Populations and the HIN	21
Table 2.3 Limited English Proficiency Populations and the HIN	22
Table 2.4 Disabled Populations and the HIN	22
Table 2.5 Youth Populations and the HIN	23
Table 2.6 Elderly Populations and the HIN	23
Table 2.7 Correlations between Share of Transportation PTI Population and HIN Proportion of	
Area Roadways	25

List of Figures

Figure 1.1 HIN Analysis Steps	2
Figure 1.2 Regional HIN	6
Figure 1.3 Subregional HIN	7
Figure 1.4 Municipal HINs	8
Figure 1.5 Quincy HIN and Corridors of Concern	9
Figure 1.6 Revere HIN and Corridors of Concern	.10
Figure 1.7 Needham HIN and Corridors of Concern	.11
Figure 1.8 Bolton HIN and Corridors of Concern	.12
Figure 1.9 Somerville HIN and Corridors of Concern	.13
Figure 2.1 High-Injury Network in Relation to Low-Income, Minority, and L.E.P. Populations	.18
Figure 2.2 High-Injury Network in Relation to Disabled, Older, and Younger Populations	.18
Figure 2.3 High-Injury Network in Relation to U.S. DOT ETC's Disadvantaged Population Indices	.19

1 Developing the High-Injury Network

The Boston Region Metropolitan Planning Organization (Boston Region MPO) is developing a Vision Zero Action Plan supported by a grant from the federal Safe Streets and Roads for All (SS4A) Program. A key component in developing this plan is the creation of a High-Injury Network (HIN)—a series of roadway locations throughout the region on which a high proportion of traffic fatalities and serious injuries occur. This memorandum provides a description of the methodology for developing the HIN, the data and criteria used, and key findings from the HIN. The results of the HIN will provide priority locations for tailored treatments throughout the regional, subregional, and municipal transportation networks.

Data Sources

Development of the HIN requires two key forms of data: crash data and roadway data. For the Boston Region MPO HIN, crash data were obtained through the Massachusetts Department of Transportation (MassDOT) IMPACT Crash Data Portal. The data represent years 2018 to 2022.

MassDOT's Roadway Inventory data were utilized as the spatial base for the HIN, segmenting the roadway every 0.1 miles. Limited-access roads were removed from the dataset, as the focus of this plan is primarily local roads and what the MPO and municipalities can do to address local roadway safety. Also, MassDOT has systems in place for addressing limited-access state-owned roads, and the higher traffic volumes and congested-related crashes would skew the HIN thresholds.

Crashes were assigned to the segments within 100 feet of the crash location. Limited-access roadways and ramps were then removed from the HIN, leaving only partial- and full-access roadways.

Methodology

The HIN development is one of the main elements of the Vision Zero Action Plan. The purpose of the HIN is to locate roads where the crashes are highest both in terms of frequency and severity. To do so, an HIN sliding window analysis was conducted by using a 1-mile window to assess clusters of crashes along the roadway network at the level of Greater Boston Metro Region, the 97 municipalities in the region, and eight subregions: North Shore Task Force (NSTF), North Suburban Planning Council (NSPC), Minuteman Advisory Group on Interlocal Coordination (MAGIC), Inner Core Committee (ICC), MetroWest Regional Collaborative (MWRC), South Shore Coalition (SSC), Three Rivers Interlocal Council (TRIC) and South West Advisory Planning Committee (SWAP). Ranking the roadway

segments was completed using a five-step process outlined in Figure 1.1. Each step is described in further detail below.

Figure 1.1 | HIN Analysis Steps

Step 1—Preprocess the Data

The first step in the HIN development is preprocessing the road layer and the crash layer. This includes reviewing the data for errors and anomalies, as well as formatting the data in a way that allows for connecting and joining in geographic information systems (GIS).

Road Layer Preprocessing

The MassDOT road layer was reviewed for any connectivity issues or inconsistencies. The following roadways were excluded from the analysis layer:

- Interstates
- Ramps
- Pedestrian facilities
- Bike Facilities
- Tunnels
- Access controlled segments

The resulting layer includes roadway segments with partial and full access.

Crash Layer Preprocessing

The crash data was obtained from the MassDOT IMPACT Crash Data Portal. Crashes that occurred on Interstates and ramps were removed to avoid attributing them to neighboring roadway facilities. The crash layers contain all the crash metadata including crash severity and whether the crash involves a vulnerable road user (VRU).

It should be noted that crash data within the City of Waltham show an overrepresentation of the fatal and serious injury crash categories that is not consistent with the previous years. This resulted in the municipality being overrepresented in both the regional and subregional HIN. To remain impartial towards the data, no adjustments have been made to balance the overrepresented fatal and serious injury crashes. Any efforts targeting or prioritizing projects in Waltham based on the regional or subregional HIN should consider this data quality concern when comparing the municipality's roadways to neighboring municipalities.

Step 2—Create a 1-Mile Sliding Window

In the second step, a 1-mile sliding window was created that slides at 0.1-mile increments along each road. This sliding window allows for a localized analysis of crash data, enabling a detailed examination of specific segments of the road network. The movement of the window ensures that all road segments are covered in the analysis and that the largest groupings of crashes are identified. For roads less than a mile in length, the entire road was treated as a single segment.

Step 3—Create a 100-Foot Buffer

The third step involved creating a 100-foot buffer around each 1-mile window. This buffer is essential for capturing the crashes that can be attributed to the roadway segment, including those that were geolocated just outside the travel way. The team experimented with multiple buffer widths, and found a 100-foot buffer was best at addressing limited geolocation precision without attributing crashes to unrelated nearby segments.

Step 4—Aggregate the Crash Scores

In the fourth step, crash scores were aggregated within the created buffers. This aggregation process involved compiling data on crashes that occurred within the buffer. The aggregated scores were calculated based on equivalent property damage only (EPDO) crash cost scores. EPDO assigns a value for each crash based on the severity and the general cost of crashes classified under that severity, relative to property damage only crashes. Values for each crash within a given window/ buffer are then added or aggregated together. The aggregation of EPDO scores provide valuable insights into the safety performance of each road segment by including both frequency and severity of crashes in a single metric. Table 1.1 provides the EPDO crash values used for the HIN.

Table 1.1 | HIN Crash Scoring

KABCO Severity Category	Non-VRU Crash Score	VRU Crash Score
Fatal Injury (K)	15	22.5
Suspected Serious Injury (A)	15	22.5
Suspected Minor Injury (B)	2	3
Possible Injury (C)	1	1.5
No Apparent Injury (O)	0	0

Step 5—Calculate Percentile Rankings

The final step of the HIN process was to calculate the ranking of the sliding window segments based on the buffer scores. This ranking helps to identify which segments of the road network have seen a higher rate of costly crashes compared to others based on reactive analysis of crash data. The team decided to set the threshold at the top five percent of the roads/crash scores to constitute the HIN. The top five percentile scores were selected to minimize the percentage of roads, while maximizing the coverage of the crashes. About 65 percent of the region's fatal and serious injury crashes occurred on the HIN.

The Boston Region MPO chose to distinguish between the corridors in the HIN, the severe crash hotspots, and the other corridors with high crash frequencies but lower crash severity. As such, the corridors with two (2) or fewer fatal and serious injury crashes were defined as "corridors of concern' and eliminated from the main HIN.

The HIN was created using a five-step systematic approach to assess and prioritize road safety. The approach utilizes network screening best practices for HIN development. It is also unbiased and replicable.

Analysis Findings

Coverage Statistics

Table 1.2 shows the coverage percentage of the HIN for each of the subregion's fatal and serious injury crashes compared to the portion of roadway mileage in the subregion. The regional HIN provides substantial coverage of the region's crashes.

Table 1.2 | HIN Coverage by Subregion

Subregion	HIN Coverage %	Road Length %
Inner Core Committee (ICC)	67.5%	8.7%
Minuteman Advisory Group on Interlocal Coordination (MAGIC)	64.4%	6.9%
MetroWest Regional Collaborative (MWRC)	48.3%	5.5%
North Suburban Planning Council (NSPC)	65.2%	7.1%
North Shore Task Force (NSTF)	61.6%	6.7%
South Shore Coalition (SSC)	67.7%	7.3%
South West Advisory Planning Committee (SWAP)	64.5%	6.7%
Three Rivers Interlocal Council (TRIC)	58.2%	6.9%
Boston Region MPO Regional Network	65.1%	6.9%

The HIN coverage statistics provide a measure of how concentrated or dispersed the crashes are within a certain network. The highest coverage is 67.7 percent for the SSC subregion and 67.5 percent for the ICC subregion, which indicates the crashes are slightly more concentrated, consistent with more urban settings and congested roadways. The lowest coverage is 48.3 percent for the MWRC subregion, which shows that crashes are slightly more dispersed, consistent with the suburban/rural land use types where the network has less traffic and opportunities for conflicts and driver errors are more spread out.

Regional HIN and Corridors of Concern

The regional HIN (as shown in Figure 1.2) is heavily concentrated around the ICC subregion due to the heavy traffic, congestion and opportunities for crash conflicts in the subregion. This is also impacted by the multimodal nature of this network and higher pedestrian and bike activity. Most of the identified corridors within the regional HIN have two or more fatal and serious injury crashes, since fatal and serious injury crashes are weighted heavily in the EPDO calculation. Few corridors were labelled as corridors of concern or locations with high EPDO scores despite lower severe crash totals.

Figure 1.2 | Regional HIN

Subregional HINs and Corridors of Concern

The subregional HINs (as shown in Figure 1.3) provide a clearer, more nuanced view of the roads that can be crash hotspots within each subregion. These are particularly useful to prioritize targeted safety investments when the projects are tied to geographies within the subregional boundaries. The subregional HINs have a higher percentage of corridors of concern identified than the Regional HIN. This is because the subregional HIN compares crash scores within each subregion, including some suburban/rural subregions that have much lower crash concentrations (and fatal and serious injury crash concentrations) than the ICC subregion.

Figure 1.3 | Subregional HIN

Municipal HINs and Corridors of Concern

The 97 individual municipal HINs (shown in Figure 1.4) provide a prioritization tool for each municipality to explore its own roadways and crash hotspots. Smaller municipalities with fewer roads and lower traffic volumes do not appear as frequently on the regional or the subregional HINs, thus the municipal HIN provides a context-sensitive comparison of their network and local roads. Municipalities can also partner with neighboring municipalities to create stronger improvements along roadway segments that transcend town barriers. The municipal HINs have the most corridors of concern identified, to support locations with high EPDO values, even where more than two fatal or serious injury crashes were not observed.

Figure 1.4 | Municipal HINs

The following figures (Figure 1.5 through Figure 1.9) contain examples from five different municipalities that represent different land uses, ranging from heavily urban to rural contexts. The HIN for each of these municipalities provides prioritization of higher crash roadways within the municipalities and allows decision makers to prioritize these roadways for future safety improvements and funding.

Figure 1.5 | Quincy HIN and Corridors of Concern

Figure 1.6 | Revere HIN and Corridors of Concern

Figure 1.7 | Needham HIN and Corridors of Concern

2 The High-Injury Network and PTI Populations

An objective of Task 2.4 was to identify what Priority Transportation Investment (PTI) communities and populations are disproportionally exposed to high crash roads, as defined by the High-Injury Network (HIN) (developed in Task 2.3). The analysis conducted under Task 2.4 informs the prioritization of high-injury network corridors for targeted safety investments (Task 5 of the development of the Boston Region Vision Zero Action Plan).

Findings from the Task 2.4 analyses suggest that areas with a higher share of low-income, minority, and/or limited-English proficiency (L.E.P.) individuals also have a greater share of roadway segments included in the HIN.

Key Findings

Findings indicate that roadways in areas with a higher share of low-income, minority, and/or L.E.P. populations (and to a lesser extent areas with a relatively higher share of individuals with a disability) consist of a greater share of the HIN relative to the area's roadway miles.

- The top quintile (20 percent) of tracts with the highest share of low-income population accounts for 39.3 percent of the region's low-income population (versus 17.6 percent of the region's population) and has a share of the region's HIN that is over 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of minority population includes 39.2 percent of the region's minority population (versus 19.0 percent of the region's population) and has a share of the region's HIN that is about 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of L.E.P. population accounts for 51.3 percent of the region's L.E.P. population (versus 19.6 percent of the region's population) and has a share of the region's HIN that is about 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of disability population accounts for 33.2 percent of the region's disability population (versus 19.6 percent of the region's population) and has a share of the region's HIN that is about 1.5 times its share of the road network.

What Does this Mean?

Prioritization of safety investments in areas with a high share of minority, low-income, and L.E.P. populations would address the disproportionate number of crashes and support underserved communities.

Task Approach

Comparing the HIN to PTI Populations

The task objective was to identify communities that are disproportionally exposed to roadways with a high number of severe crashes. This task consisted of using GIS to compare the location of the HIN against the census tract demographics. Census tracts are a useful geography for this investigation as these areas tend to have the same boundary over the census years, generally an average population of about 4,000 people, and can be tied to various socio-demographic characteristics.

Defining Communities

There are various ways to consider PTI populations in the process of understanding whether the HIN falls disproportionally in different communities. For an initial investigation, two existing sources that define PTI populations were used: one based on the MPO's <u>definition of PTI</u> populations and one based on U.S. DOT's <u>definition</u>. Both databases define areas associated with protected populations under civil rights laws and environmental justice directives.¹ Other sources were considered (e.g., CDC/ATSDR Social Vulnerability Index), yet these were not applied in the examination of the HIN because these sources use the same underlying data sets (U.S. Census surveys) and would result in similar outcomes.

PTI Populations, as defined by the Boston Region MPO

The Boston Region MPO provided a database of the region's census tracts with the number and share of PTI populations associated with their definitions of (a) Low-income; (b) Minority; (c) limited English proficiency (L.E.P.); (d) Older Adults (age 75 or older); (e) Young People (age 17 and under);

¹ Environmental Justice (EJ) at the Federal Highway Administration (FHWA) means identifying and addressing disproportionately high and adverse effects of the agency's programs, policies, and activities on minority populations and low-income populations to achieve a fair distribution of benefits and burdens. Similarly, the Federal Transit Administration's EJ Circular 4703.1, issued August 2015, further directs MPOs to identify and address disproportionately high and adverse effects (referred to as disproportionate burdens) of its activities on minority populations and low-income populations and low-income populations.

and (f) Disabled. In this database, a PTI area is defined as having a share of the PTI population that is higher than MPO region's average for that PTI population.²

As described later in this memorandum, the project team explored variations of how to define a PTI area using the share of a PTI population and its percentile rank within the Boston Region.

Disadvantaged Neighborhood/Community, as defined by the U.S. DOT (ETC)

As an alternative to the Boston Region MPO's PTI database, two datasets from U.S. DOT (*the Equitable Transportation Community [ETC] Social Vulnerability index* and the *ETC Transportation Insecurity index*) were analyzed to understand these indices relative to the HIN. The ETC Explorer tool is "an interactive web application that uses 2020 Census Tracts and data, to explore the cumulative burden communities experience, as a result of underinvestment in transportation." The use of the tool is intended to "help ensure the benefits of DOT's investments are addressing the transportation related causes of disadvantage" and to "understand how [an area] is experiencing [a] burden that transportation investments can mitigate or reverse."³ Furthermore, U.S. DOT states that the ETC Explorer "provides MPOs, State DOT's, and local decision makers tools to help select projects that meet the transportation needs of areas, which in turn will help strengthen communities and create more opportunities to improve daily life."

This database is also organized by census tract. The ETC's *Social Vulnerability* index is a measure of 13 socioeconomic indicators "that have a direct impact on quality of life. This set of indicators measure lack of employment, educational attainment, poverty, housing tenure, access to broadband, and housing cost burden as well as identifying household characteristics such as age, disability status and English proficiency." The *Transportation Insecurity* index is intended to

- 2018–22 American Community Survey, Table C16001: Language Spoken at Home for the Population 5 Years and Over; <u>data.census.gov</u>.
- 2018–22 American Community Survey, Table B16004: Age by Language Spoken at Home by Ability to Speak English for the Population 5 Years and Older; <u>data.census.gov</u>.
- 2018–22 American Community Survey, Table B18101: Sex by Age by Disability Status; data.census.gov.

² The U.S. Census Bureau data sources for these demographic characteristics include:

^{• 2020} Decennial Census Demographic and Housing Characteristics, Table P5: Hispanic or Latino Origin by Race; <u>data.census.gov</u>.

^{• 2018–22} American Community Survey, Table C17002: Ratio of Income to Poverty Level in the Past 12 Months; <u>data.census.gov</u>.

^{• 2020} Decennial Census Demographic and Housing Characteristics, Table P12: Sex by Age for Selected Categories; <u>data.census.gov</u>.

 ³ U.S. DOT ETC Explorer, Homepage: <u>https://experience.arcgis.com/experience/0920984aa80a4362b8778d779b090723/page/Homepage/.</u> Note: As of May 2025, this page has been taken down by U.S. DOT.

represent "when people are unable to get to where they need to go to meet the needs of their daily life regularly, reliably, and safely."⁴

HIN Relative to Area Demographics

As noted by the Boston Region MPO's own geographical analyses of PTI populations in the Boston region, in general, minority populations, people with low incomes, and people with limited English proficiency tend to live closer to or in the city of Boston, whereas people age 75 years or older, people age 17 years or younger, and people with disabilities are dispersed throughout the region.⁵ By exploring the association of the geographic distribution and concentrations of PTI populations against the location of the HIN, it can be determined whether a greater share of the HIN falls within areas with high concentrations of PTI populations.

The project team performed two sets of screening analyses:

- An initial screening using defined areas for PTI populations (Boston Region MPO definition) or disadvantaged communities (U.S. DOT's ETC indices).
- A refined analysis to confirm the initial findings and point to which (and how) PTI populations could factor in the prioritization of the HIN for safety investments.

Initial Screening

Initial Screening: Boston Region MPO PTI Areas

Figure 2.1 and Figure 2.2 show the comparison between the share of the HIN and the share of the entire roadway network that overlap with specific PTI populations. Situations where the HIN overlaps more with PTI populations compared to the entire roadway network indicate a stronger correlation between those PTI populations and high-injury crash areas.

Comparing the PTI populations with the HIN produce the following findings:

In low-income and minority populations the HIN is over-represented compared to the overall roadway network. Both have more than double the share of roadway mileage (44 percent versus 22 percent and 46 percent versus 22 percent, respectively) in the HIN compared to the entire network.

 ⁴ U.S. DOT ETC Explorer, Understanding the Data: <u>https://experience.arcgis.com/experience/0920984aa80a4362b8778d779b090723/page/Understanding</u> <u>-the-Data/</u>. Note: As of May 2025, this page has been taken down by U.S. DOT.

⁵ Transportation Improvement Program (TIP): Federal Fiscal Years 2024–28, Geographical Analyses of Populations in the Boston Region, <u>www.ctps.org/data/pdf/plans/TIP/FFYs-2024-2028-TIP.pdf#page=335</u>.

- While not as strong as *low-income* and *minority* populations, *L.E.P.* and *disability* populations are over-represented in the HIN network compared to the entire road network (7 percent versus 5 percent and 50 percent versus 38 percent, respectively).
- While older and younger populations are not over-represented on the HIN, they remain important PTI populations.

Figure 2.2 | High-Injury Network in Relation to Disabled, Older, and Younger Populations

Initial Screening: ETC Disadvantaged Community Areas

In addition to specific populations based on one PTI characteristic, the HIN can also be compared to more holistic PTI communities, such as:

- U.S. DOT's ETC Social Vulnerability Index includes various socio-economic indicators such as low-income, old population, younger population, disability, L.E.P., and others.
- U.S. DOT's *Transportation Insecurity Index* is related to barriers people face in performing their daily activities such as getting to jobs, getting to school, and getting to doctor's appointments.

Results of this comparison are seen in Figure 2.3. The *Social Vulnerability* Index is significantly overrepresented (40 percent versus 20 percent) in the HIN and the *Transportation Insecurity Index* is not over-represented (33 percent versus 52 percent).

Figure 2.3 | High-Injury Network in Relation to U.S. DOT ETC's Disadvantaged Population Indices

Refined Screening

The project team performed a refined analysis to confirm the initial findings, further identify the HIN relative to PTI populations, and point to which PTI populations could factor in the prioritization of the HIN for safety investments. The screening uses characteristics tied to the census tract level. Tracts are compared against each other according to their percentile rank of the characteristic among the Boston Region MPO's geography.

Refined Screening: Boston Region MPO PTI Areas

In reviewing the Boston Region MPO's census tracts based on their percentile rank associated with the share of each PTI population, areas with a higher share of minority, low-income, L.E.P., and (to a lesser extent) disabled populations tend to have a higher share of the HIN relative to the area's roadways:

- The top quintile (20 percent) of tracts with the highest share of low-income population accounts for 39.3 percent of the region's low-income population (versus 17.6 percent of the region's population) and has a share of the region's HIN that is over 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of minority population accounts for 39.2 percent of the region's minority population (versus 19.0 percent of the region's population) and has a share of the region's HIN that is about 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of L.E.P. population accounts for 51.3 percent of the region's L.E.P. population (versus 19.6 percent of the region's population) and has a share of the region's HIN that is about 2.3 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of disability population accounts for 33.2 percent of the region's disability population (versus 19.6 percent of the region's population) and has a share of the region's HIN that is about 1.5 times its share of the road network.
- The top quintile (20 percent) of tracts with the highest share of youth population, accounts for 29.4 percent of the region's youth population (versus 21.2 percent of the region's population) and has a share of the region's HIN that is about 0.6 times its share of the road network. The bottom quintile (lowest share of youth) has a share of the region's HIN that is nearly twice its share of roadways.
- The top quintile (20 percent) of tracts with the highest share of elderly population accounts for 34.8 percent of the region's elderly population (versus 20.7 percent of the region's population) and has a share of the region's HIN that is about 0.85 times its share of the road network. The bottom quintile (lowest share of elderly population) has a share of the region's HIN that is about twice its share of roadways.

Summary tables associated with this screening are provided below in Table 2.1 through Table 2.6.

21

	Population Totals			Share of MP	Share of MPO Population		Roadway Network			
Quintile	Minority Population	Total Population	% Minority	Minority Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio		
1	479,667	636,800	75.3%	39.2%	19.0%	9.1%	20.8%	2.29		
2	303,836	653,583	46.5%	24.8%	19.5%	12.5%	24.1%	1.92		
3	203,697	648,715	31.4%	16.6%	19.3%	18.1%	22.3%	1.23		
4	151,681	701,590	21.6%	12.4%	20.9%	26.9%	17.8%	0.66		
5	84,934	716,506	11.9%	6.9%	21.3%	33.3%	14.9%	0.45		
Total	1,223,835	3,357,194	36.5%	100.0%	100.0%	100.0%	100.0%	1.00		

Table 2.1 | Minority Populations and the HIN

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

Table 2.2 | Low-Income Populations and the HIN

	Population Totals			Share of MPC	Share of MPO Population		Roadway Network			
Quintile	Low-Income Population	Total Population	% Low- Income	Low-Income Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio		
1	246,067	567,200	43.4%	39.3%	17.6%	7.6%	17.9%	2.36		
2	167,357	670,740	25.0%	26.7%	20.8%	14.2%	24.4%	1.71		
3	104,333	657,505	15.9%	16.7%	20.4%	20.2%	22.3%	1.11		
4	69,811	663,679	10.5%	11.1%	20.6%	26.1%	18.8%	0.72		
5	38,623	665,204	5.8%	6.2%	20.6%	31.9%	16.6%	0.52		
Total	626,191	3,224,328	19.4%	100.0%	100.0%	100.0%	100.0%	1.00		

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

	Population Totals			Share of MP	Share of MPO Population		Roadway Network		
Quintile	L.E.P. Population	Total Population	% L.E.P.	L.E.P. Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio	
1	186,181	618,628	30.1%	51.3%	19.6%	9.3%	21.3%	2.29	
2	87,253	607,668	14.4%	24.1%	19.2%	13.6%	22.1%	1.63	
3	50,126	647,910	7.7%	13.8%	20.5%	20.3%	22.1%	1.09	
4	29,300	684,477	4.3%	8.1%	21.7%	25.7%	19.6%	0.76	
5	9,819	602,423	1.6%	2.7%	19.1%	31.2%	14.9%	0.48	
Total	362,679	3,161,106	11.5%	100.0%	100.1%	100.1%	100.0%	1.00	

Table 2.3 | Limited English Proficiency Populations and the HIN

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

Table 2.4 | Disabled Populations and the HIN

	Population Totals			Share of MP	Share of MPO Population		Roadway Network			
Quintile	Disability Population	Total Population	% Disability	Disability Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio		
1	112,337	649,528	17.3%	33.2%	19.6%	13.8%	20.6%	1.49		
2	81,937	695,092	11.8%	24.2%	21.0%	20.0%	22.7%	1.14		
3	65,683	691,494	9.5%	19.4%	20.9%	23.0%	19.1%	0.83		
4	50,654	692,571	7.3%	15.0%	20.9%	22.5%	21.4%	0.95		
5	28,040	578,101	4.9%	8.3%	17.5%	20.8%	16.2%	0.78		
Total	338,651	3,306,786	10.2%	100.1%	99.9%	100.1%	100.0%	1.00		

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

	Population Totals			Share of MP	Share of MPO Population		Roadway Network		
Quintile	Youth Population	Total Population	% Youth	Youth Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio	
1	186,706	712,149	26.2%	29.4%	21.2%	26.4%	15.7%	0.59	
2	166,983	761,759	21.9%	26.3%	22.7%	27.1%	18.9%	0.70	
3	139,170	729,136	19.1%	21.9%	21.7%	22.5%	24.8%	1.10	
4	95,942	611,031	15.7%	15.1%	18.2%	16.3%	25.5%	1.56	
5	45,685	543,119	8.4%	7.2%	16.2%	7.7%	15.2%	1.97	
Total	634,486	3,357,194	18.9%	99.9%	100.0%	100.0%	100.1%	1.00	

Table 2.5 | Youth Populations and the HIN

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

Table 2.6 | Elderly Populations and the HIN

	Population Totals			Share of MPO Population		Roadway Network			
Quintile	Elderly Population	Total Population	% Elderly	Elderly Population	Total Population	Share of MPO Road Miles	Share of HIN Miles	Ratio	
1	81,653	695,863	11.7%	34.8%	20.7%	27.6%	23.3%	0.84	
2	57,914	732,123	7.9%	24.7%	21.8%	26.2%	20.9%	0.80	
3	46,133	724,762	6.4%	19.6%	21.6%	23.1%	20.4%	0.88	
4	32,957	661,890	5.0%	14.0%	19.7%	14.9%	18.3%	1.23	
5	16,157	542,556	3.0%	6.9%	16.2%	8.3%	17.1%	2.06	
Total	234,814	3,357,194	7.0%	100.0%	100.0%	100.1%	100.0%	1.00	

Source: U.S. Census Bureau; 2020 Decennial Census Demographic and Housing Characteristics and 2018–2022 American Community Survey.

Correlation Analysis

The project team performed a correlation analysis to further assess the relationship between the PTI population percentile ranks and the percentage of roads within the census tract that are on the HIN. Through this correlation analysis, the team can identify which PTI groups show higher exposure to the HIN. These identified groups can be prioritized because of their higher correlation with roadways designated as high injury within their census tracts.

The analysis involved the following steps:

- Calculation of HIN Share within Census Tracts: To perform the analysis, the first step was to calculate the HIN share within each census tract. The team determined the length of roads within the tract that are classified as part of the HIN, then compared this value to the total length of roadways within the tract. This results in the percentage of roads in the area designated as high injury.
- Correlation Analysis: The team calculated Pearson's correlation coefficient to measure the strength and direction of the correlation between the PTI population shares (percentile rank) for each population group and the percentage share of HIN roads.
- Identification of High Exposure to the HIN: Through the correlation analysis, the project team identified which PTI groups show higher exposure to the HIN. The identified groups are prioritized based on their higher correlation with roadways designated as high injury within their census tracts.

The analysis identified that the primary PTI populations that correlate with a higher proportion of the HIN in relation to the road network are "Minority," "Low-Income," "L.E.P.," and "Disability." Notably, "Youth Population" and "Elderly Population" were found to have a negative correlation with the percentage of HIN roads. These findings generally align with the conclusions from the refined screening analysis that investigated the PTI populations by quintile group.

More detailed results from the analysis are shown in Table 2.7.

Community	Minority Share	L.E.P. Share	Youth Share	Elderly Share	Disability Share	Low-Income Share	HIN Proportion
Minority Share	1	0.78	0.035	-0.48	0.27	0.65	0.42
L.E.P. Share	0.78	1	-0.00022	-0.28	0.39	0.68	0.35
Youth Share	0.035	-0.00022	1	0.092	0.015	-0.19	-0.24
Elderly Share	-0.48	-0.28	0.092	1	0.17	-0.35	-0.21
Disability Share	0.27	0.39	0.015	0.17	1	0.46	0.084
Low-Income Share	0.65	0.68	-0.19	-0.35	0.46	1	0.37
HIN Proportion	0.42	0.35	-0.24	-0.21	0.084	0.37	1

Table 2.7 | Correlations between Share of Transportation PTI Population and HIN Proportion of Area Roadways

